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Abstract If the complement of a closed convex set in a closed convex cone is bounded,
then this complement minus the apex of the cone is called a coconvex set. Coconvex
sets appear in singularity theory (they are closely related to Newton diagrams) and in
commutative algebra. Such invariants of coconvex sets as volumes, mixed volumes,
number of integer points, etc., play an important role. This paper aims at extending
various results from the theory of convex bodies to the coconvex setting. These include
the Aleksandrov–Fenchel inequality and the Ehrhart duality.

Keywords Coconvex bodies · Aleksandrov-Fenchel inequalities · Volume ·
Valuations on polytopes · Virtual convex polytopes

1 Introduction

The geometric study of coconvex bodies is motivated by singularity theory. The con-
nections between coconvex geometry and singularity theory are similar to the con-
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Discrete Comput Geom

nections between convex geometry and algebraic geometry. Many local phenomena
studied by singularity theory are local manifestations of global algebraic geometry
phenomena. Thus it would be natural to expect that many properties of coconvex bod-
ies are manifestations of properties of convex bodies. In this paper, we prove a number
of results of this spirit.

In the first subsection of the introduction, we briefly overview the connections
of convex geometry with algebraic geometry, of algebraic geometry with singularity
theory and, finally, of singularity theory with coconvex geometry. These were the main
motivations of the authors, however, neither algebraic geometry, nor singularity theory
appear later in the text. Thus the following subsection can be omitted.

1.1 Overview

The theory of Newton polytopes founded in 1970s revealed unexpected connections
between algebraic geometry and convex geometry. These connections turned out to be
useful for both fields. According to a theorem of Kouchnirenko and Bernstein [4,15],
the number of solutions of a polynomial system P1 = · · · = Pd = 0 in (C\{0})d

equals d! times the mixed volume of the corresponding Newton polytopes �1, . . . ,
�d . Recall that, for a complex polynomial P = ∑

α∈Zd cαzα , the Newton polytope

of P is the convex hull in R
d of all points α ∈ Z

d with cα �= 0. The relationship
between Algebra and Geometry contained in the Kouchnirenko–Bernstein theorem
allowed to prove the Aleksandrov–Fenchel inequalities using transparent and intuitive
algebraic geometry considerations [10,20], to find previously unknown analogs of the
Aleksandrov–Fenchel inequalities in algebraic geometry [8], to find convex-geometric
versions of the Hodge–Riemann relations that generalize the polytopal Aleksandrov–
Fenchel inequalities [18,21]. The number of integer points in polytopes is a classical
object of study in geometry and combinatorics. The relationship with algebraic geom-
etry has enriched this area with explicit formulas of Riemann–Roch type [12], has
allowed to connect the Ehrhart duality with the Serre duality (from topology of alge-
braic varieties). The integration with respect to the Euler characteristic, inspired by
the connections with algebraic geometry, has allowed to find a better viewpoint on
classical results of McMullen, simplify and considerably generalize them [11,12].
Connections with algebraic geometry led to important results in combinatorics of
simple (and non-simple) convex polytopes, and had many more follow-ups.

The theory of Newton polytopes has a local version, which studies singularities
of sufficiently generic polynomials with given Newton diagrams at the origin. This
theory connects singularity theory with somewhat unusual geometric objects, namely,
Newton diagrams. A Newton diagram is the union of all compact faces of an unbounded
convex polyhedron lying in a convex cone (which in this case coincides with the
positive coordinate orthant) and coinciding with the cone sufficiently far from the
origin. The complement in the cone of the given unbounded convex polyhedron is,
in our terminology, a coconvex body (except that it is also convenient to remove the
apex of the cone from the coconvex body for reasons that will become clear later).
Computations of local invariants in algebraic geometry and singularity theory have
persistently led to volumes and mixed volumes of coconvex bodies, the number of
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integer points in coconvex bodies, etc. Computation of local invariants is often reduced
to computation of global invariants. Let us illustrate this effect on the following toy
problem: compute the multiplicity of the zero root of a polynomial P(z) = ak zk +
· · ·+anzn with ak �= 0 and an �= 0. The multiplicity of the zero root of the polynomial
P equals the number of nonzero roots of a polynomial Pε = P + ε that vanish (i.e.,
tend to 0) as ε → 0. The Newton polytopes of the polynomials Pε (ε �= 0) and P are,
respectively, the intervals [0, n] and [k, n]. The lengths n and n − k of these intervals
are equal to the number of nonzero roots of the polynomials Pε and P (the answers in
global problems). It follows that exactly k = n − (n − k) solutions vanish as ε → 0.
Thus, in this simplest case, the multiplicity μ = k of the root 0 (the local invariant)
equals the difference of two global invariants, namely, the lengths n and n − k of the
intervals [0, n] and [k, n].

Similarly to this simple example, many questions of singularity theory (local ques-
tions) reduce to questions of algebraic geometry (global questions). Computing vari-
ous local invariants for generic collections of functions with given Newton diagrams
reduces to computing global algebro-geometric invariants for collections of generic
polynomials with given Newton polytopes.

A systematic development of the coconvex bodies theory became a pressing need
when, several years ago, relationships between convex and coconvex geometry on
one side, algebraic geometry and singularity theory on the other side, were found that
are far more general than the relationships based on Newton diagrams and Newton
polytopes. For example, these relationships have allowed Kaveh and Khovanskii [9]
to deduce non-trivial commutative algebra inequalities from a version of the Brunn–
Minkowski inequality for coconvex bodies (this version follows from Theorem A).
Computing Hilbert polynomials of algebraic varieties and their local versions for
algebraic singularities leads to problems of counting integer points in lattice convex
and coconvex polytopes.

1.2 Terminology and Notation

We start by recalling some terminology from convex geometry, see e.g. [19] for a
detailed exposition. The Minkowski sum of two convex sets A, B ⊂ R

d is defined as
A + B = {a + b | a ∈ A, b ∈ B}. For a positive real number λ, we let λA denote the
set {λa | a ∈ A}. By definition, a convex body is a compact convex set, whose interior
is nonempty.

Let C ⊂ R
d be a convex cone with the apex at 0 and a nonempty interior. Consider

a closed convex subset � ⊂ C such that C\� is bounded and nonempty. Note that
sets � with specified properties exist only if C is a salient cone, i.e., if C contains no
affine subspace of dimension 1. Then the set A = C\(� ∪ {0}) is called a coconvex
body. When we talk about volumes, we may replace A with its closure A. However,
for the discussion of integer points in coconvex bodies, the distinction between A and
A becomes important. If A and B are coconvex sets with respect to the same cone
C , then we can define A ⊕ B as C\((�A + �B) ∪ {0}), where �A and �B are the
unbounded components of C\A and C\B, respectively. It is clear that any C-coconvex
set can be represented as a set-theoretic difference of two convex bounded sets. This
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representation allows to carry over a number of results concerning the convex bodies
with the operation + to the coconvex bodies with the operation ⊕.

In this paper, we describe several results of this type. Although the reduction from
the “convex world” to the “coconvex world” is always simple and sometimes straight-
forward, the results obtained with the help of it are interesting because, firstly, they are
related (through Newton diagrams) with singularity theory [2,14] and commutative
algebra [9], and, secondly, they are intrinsic, i.e., do not depend on a particular repre-
sentation of a coconvex set as a difference of two convex sets. Coconvex Aleksandrov–
Fenchel inequalities also appeared in [7] in the context of Fuchsian groups. This paper
extends the earlier very short preprint [13] of the authors, in which just the coconvex
Aleksandrov–Fenchel inequality has been discussed.

1.3 Aleksandrov–Fenchel Inequalities

A linear family of convex bodies is a collection of the following objects: a real vector
space V , an open subset � ⊂ V , a map f from � to the set of all convex bodies in R

d

such that

f (λ1v1 + · · · + λnvn) = λ1 f (v1) + · · · + λn f (vn)

whenever all vi ∈ �, all λi are positive, and λ1v1 + · · · + λnvn ∈ �. A linear family
of convex bodies with m marked points is a linear family (V,�, f ) of convex bodies,
in which some m elements of � are marked.

With every linear family α = (V,�, f ) of convex bodies, we associate the volume
polynomial Volα on V as follows. For v ∈ �, we define Volα(v) as the usual d-
dimensional volume of the convex body f (v). It is well known that the function Volα
thus defined extends to a unique polynomial on V that is homogeneous of degree d.
For v ∈ V , we let Lv denote the usual directional (Lie) derivative along v. Thus Lv is
a differential operator that acts on functions, in particular, degree k polynomials on V
are mapped by this operator to degree k − 1 polynomials. If α = (V,�, f ) is a linear
family of convex bodies with (d −2) marked points v1, . . . , vd−2 ∈ �, then we define
the Aleksandrov–Fenchel symmetric bilinear form Bα on V by the formula

Bα(u1, u2) = 1

d! Lu1 Lu2 Lv1 · · · Lvd−2(Volα).

Note that the expression in the right-hand side is a real number (called the mixed
volume of the convex bodies f (u1), f (u2), f (v1), . . . , f (vd−2) provided that u1,
u2 ∈ �). Indeed, this is the result of the action of a homogeneous degree d dif-
ferential operator with constant coefficients on a homogeneous degree d polyno-
mial. The corresponding quadratic form Qα(u) = Bα(u, u) is given by the formula
Qα = 2

d! Lv1 · · · Lvd−2(Volα). The expression in the right-hand side is the result of the
action of a degree d−2 homogeneous differential operator with constant coefficients on
a homogeneous degree d polynomial, i.e., a quadratic form. The Aleksandrov–Fenchel
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inequality [1] states that, for all u1 ∈ V and u2 ∈ �, we have

Bα(u1, u2)
2 � Bα(u1, u1)Bα(u2, u2).

The Aleksandrov–Fenchel inequality is a far-reaching generalization of the classical
isoperimetric inequality. See [18,21] for generalizations of the Aleksandrov–Fenchel
inequality for convex polytopes.

The following are standard corollaries of the Aleksandrov–Fenchel inequality:

Brunn–Minkowski inequality: the function Vol
1
d
α is concave, i.e.

(Volα(tu + (1 − t)v))
1
d � tVolα(u)

1
d + (1 − t)Volα(v)

1
d , t ∈ [0, 1].

Generalized Brunn–Minkowski inequality: the function
(
Lv1 . . . Lvk Volα

) 1
d−k is con-

cave.
First Minkowski inequality:

( 1

d! Lu Ld−1
v (Volα)

)d � Volα(u)Volα(v)d−1.

Second Minkowski inequality: if all marked points coincide with u, then

Bα(u, v)2 � Volα(u) Bα(v, v)

1.4 Coconvex Aleksandrov–Fenchel Inequalities

Define a linear family of C-coconvex bodies as a collection of the following objects:
a vector space V , an open subset � ⊂ V , a map g from � to the set of all C-coconvex
bodies such that

g(λ1v1 + · · · + λnvn) = λ1g(v1) ⊕ · · · ⊕ λng(vn)

whenever all vi ∈ �, all λi are positive, and λ1v1 + · · · + λnvn ∈ �. A linear
family of C-coconvex bodies with m marked points is a linear family (V,�, g) of
C-coconvex bodies, in which some m elements of � are marked. With every linear
family β of C-coconvex bodies, we associate the volume function Volβ in the same
way as with a linear family of convex bodies. The function Volβ thus defined is also a
homogeneous degree d polynomial (we will prove this below). Given a linear family β

of C-coconvex bodies with d −2 marked points v1, . . . , vd−2, we define the coconvex
Aleksandrov–Fenchel symmetric bilinear form as

BC
β (u1, u2) = 1

d! Lu1 Lu2 Lv1 · · · Lvd−2(Volβ).

We will also consider the corresponding quadratic form QC
β = 2

d! Lv1 · · · Lvd−2(Volβ).
The following is one of our main results.
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Theorem A The form QC
β is non-negative, i.e., QC

β (u) � 0 for all u ∈ V . In particular,
the corresponding symmetric bilinear form satisfies the Cauchy–Schwarz inequality

BC
β (u1, u2)

2 � BC
β (u1, u1)BC

β (u2, u2).

The inequality stated in Theorem A is called the coconvex Aleksandrov–Fenchel
inequality. In recent paper [7], Theorem A is proved under the assumption that C is a
fundamental cone of some discrete group � acting by linear isometries of a pseudo-
Euclidean metric, and C\(g(v) ∪ {0}) is the intersection of some convex �-invariant
set with C , for every v ∈ �. Theorem A is motivated by an Aleksandrov–Fenchel
type inequality for (mixed) intersection multiplicities of ideals [9].

The following inequalities can be derived from Theorem A in the same way as
similar inequalities for convex bodies follow from the classical Alexandrov–Fenchel
inequality (cf. [7]):

Reversed Brunn–Minkowski inequality: the function Vol
1
d
β is convex, i.e.

(Volβ(tu + (1 − t)v))
1
d � t Volβ(u)

1
d + (1 − t)Volβ(v)

1
d , t ∈ [0, 1].

Generalized reversed Brunn–Minkowski inequality: the function
(
Lv1 · · · Lvk

Volβ
) 1

d−k is convex.
First reversed Minkowski inequality:

( 1

d! Lu Ld−1
v (Volβ)

)d � Volβ(u)Volβ(v)d−1.

Second reversed Minkowski inequality: if all marked points coincide with u, then

BC
β (u, v)2 � Volβ(u) BC

β (v, v)

1.5 Coconvex Polytopes as Virtual Convex Polytopes

The set of convex polytopes is closed under Minkowski addition but not closed under
“Minkowski subtraction”. Virtual convex polytopes are geometric objects introduced
in [11] that can be identified with formal Minkowski differences of convex polytopes.
We will now briefly recall the notion of a virtual convex polytope.

Consider the smallest ring R(Rd) of sets containing all closed half-planes in R
d .

Clearly, all convex polytopes belong to R(Rd). There is a unique finitely additive mea-
sure χ on R(Rd) such that, for every closed bounded set A ∈ R(Rd), the number χ(A)

is equal to the Euler characteristic of A. Let Z(Rd) be the Z-algebra of all measurable
functions with respect to R(Rd) with values in Z, and let Zc(R

d) be its subalgebra
consisting of functions with compact support. With every element A ∈ R(Rd), we
associate its indicator function IA that is equal to 1 on A and to 0 elsewhere. The
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additive group of Zc(R
d) is spanned by the indicator functions of convex polytopes.

If α, β ∈ Zc(R
d), we define the Minkowski product α ∗ β as the convolution

α ∗ β(x) =
∫

α(y)β(x − y)dχ(y).

(The integration is performed over R
d with respect to the measure χ .) We recall one

simple lemma from [11]:

Lemma 1.1 Suppose that A and B are convex polytopes in R
d . Then IA+B = IA ∗IB.

Thus the Minkowski sum of convex polytopes corresponds to the Minkowski prod-
uct in Zc(R

d).

Proof Consider the function

ϕ(x) =
∫

IA(y)IB(x − y)dχ(y).

If x ∈ A + B, then the set F(y) of all y ∈ A such that x − y ∈ B is a nonempty
convex polytope (clearly, both conditions y ∈ A and x − y ∈ B define systems of
linear inequalities on y). Therefore, ϕ(x) = 1. If x �∈ A + B, then the set F(y) is
empty; therefore, ϕ(x) = 0. We see that ϕ coincides with IA+B . 	


It follows from Lemma 1.1 that I{0} is the identity element of the ring Zc(R
d). It

is proved in [11] that, for every convex polytope A in R
d , the indicator function IA

is an invertible element of the ring Zc(R
d), i.e., there exists an element ϕ ∈ Zc(R

d)

with the property ϕ ∗ IA = I{0} (we write ϕ = I
−1
A ). The function ϕ : R

d → Z

admits a simple explicit description: it is equal to (−1)dim(A) on the relative interior
of the set {−x | x ∈ A} and to 0 elsewhere. Virtual (convex) polytopes are defined as
elements of Zc(R

d) of the form IA ∗ I
−1
B , where A and B are convex polytopes. If

we identify convex polytopes with their indicator functions, then virtual polytopes are
identified with formal Minkowski differences of convex polytopes. Virtual polytopes
form a commutative group under Minkowski multiplication. Note that we do not deal
with more general “virtual convex bodies” than virtual polytopes; the corresponding
theory is more involved and is still developing, see e.g. [16].

Fix a linear function ξ : R
d → R such that ξ � 0 on C and ξ−1(0) ∩ C = {0};

for every subset X ⊂ C , we set Xt = X ∩ {ξ � t}. The following theorem is a
general principle that allows to reduce various facts about coconvex polytopes to the
corresponding facts about convex polytopes.

Theorem B Let C ⊂ R
d be a salient convex polyhedral cone with the apex at 0 and

a nonempty interior. Suppose that � ⊂ C is a convex unbounded polyhedron different
from C such that C\� is bounded, and A = C\(� ∪ {0}) is the corresponding C-
coconvex polytope.

(1) The function −IA is a virtual polytope. Moreover, we have

−IA = I�t ∗ I
−1
Ct

for all sufficiently large t ∈ R.
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(2) If A and B are C-coconvex polytopes, then

−IA⊕B = (−IA) ∗ (−IB).

Theorem B explains our definition of a coconvex body, in particular, the choice of
the boundary points that need to be included into it. Theorem A can be deduced from
Theorem B and the convex Aleksandrov–Fenchel inequalities. There are many other
consequences of Theorem B that deal with C-coconvex integer polytopes. Some of
them are stated below.

Define a convex integer polytope as a convex polytope with integer vertices. Let
Rc(Z

d) be the minimal subring of the ring of sets R(Rd) containing all convex integer
polytopes. Similarly, let Zc(Z

d) be the minimal subalgebra of Zc(R
d) containing the

indicator functions of all convex integer polytopes. Clearly, any function in Zc(Z
d) is

measurable with respect to Rc(Z
d). A valuation on integer polytopes is by definition

a finitely additive measure on Rc(Z
d). For a valuation μ on integer polytopes and an

element ϕ of the ring Zc(R
d), we define μ(ϕ) as the integral of the function ϕ with

respect to the measure μ. Note that μ(A), the measure μ evaluated at a measurable
set A, is the same as μ(IA). Similarly to valuations on integer polytopes, we define
more general valuations on polytopes as finitely additive measures on Rc(R

d).
Recall that a function P on a commutative multiplicative group G is said to be

polynomial of degree � d if, for every fixed g ∈ G, the function P(gx) − P(x) is
polynomial of degree � d − 1. Polynomial functions of degree 0 are by definition
constant functions. Define the group of virtual integer polytopes as the subgroup of the
group of virtual polytopes generated by the indicator functions of all convex integer
polytopes. Recall the following theorem of [11]: If a valuation μ on integer polytopes
is polynomial of degree � k, i.e., for every convex integer polytope A, the function
x �→ μ(A+x) is a polynomial on Z

d of degree at most k, then the function ϕ �→ μ(ϕ)

is a polynomial function of degree � d+k on the group of virtual integer polytopes with
∗ as the group operation. An important example of a valuation on integer polytopes is
the valuation μ that assigns the number of integer points in X to every X ∈ Rc(Z

d).
This valuation can be evaluated on all virtual integer polytopes. In particular, for
every integer convex polytope A, the number μ(I∗n

A ) depends polynomially on n (cf.
[11,17]). This polynomial function is called the Ehrhart polynomial of A.

Let C , � and A be as in Theorem B. Suppose that C is an integer polyhedral cone,
i.e., there exist elements v1, . . . , vn ∈ Z

d such that

C = {t1v1 + · · · + tnvn | t1, . . . , tn � 0}.

Suppose also that all vertices of � belong to Z
d (in this case, we will say that A is a

C-coconvex integer polytope). The following statements are corollaries of Theorem B.

Corollary 1.2 Let μ be a polynomial valuation of degree � k on integer convex
polytopes, and let A1, . . . , An be C-coconvex integer polytopes. The number

E(m1, . . . , mn) = μ(m1 A1 ⊕ m2 A2 ⊕ · · · ⊕ mn An)
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is defined for any choice of positive integers m1, . . . , mn, and depends polynomially
(of degree � k + d) on m1, . . . , mn.

We will use the following notation. For a C-coconvex body A, we write Int(A) for
the interior of A. We set A to be the closure of A, and define A• as A ∩ Int(C).

Corollary 1.3 The polynomial function E defined in Corollary 1.2 can be evaluated
at m1 = · · · = mn = −1, and we have

E(−1, . . . ,−1) = (−1)dμ(−A•
1 − · · · − A•

n) − μ({0}).

1.6 Generating Functions for Integer Points

Let us now consider the following valuation G on integer convex polytopes with values
in rational functions of some formal variables x1, . . . , xd :

G(X) =
∑

a∈X∩Zd

xa .

Here X is any element of Rc(Z
d), and xa is the monomial xa1

1 , . . . , xad
d . The rational

function G(X) is called the generating function for the integer points in X . The
following theorem is due to Brion [5], see also [3,12]: the valuation G extends to the
minimal ring of sets R(Zd) containing all integer cones and their parallel translations
by integer vectors; moreover, for any integer convex polytope A, we have

G(A) =
∑

a∈Vert(A)

xaG(Ca),

where Vert(A) is the set of all vertices of A, and Ca is the cone spanned by A − a,
the translate of A by the vector −a.

Note that G(Ca) can be computed explicitly, by subdividing Ca into cones, each of
which is spanned by a basis of Z

d . If a cone C is spanned by a basis of Z
d , then the

computation of G(C) reduces to the summation of a geometric series. In this paper,
we will prove the following theorem that generalizes Brion’s theorem to coconvex
polytopes.

Theorem C Let C be an integer polyhedral cone, and let A be a C-coconvex integer
polytope. Then

G(A) = −
∑

a∈Vert(A)\{0}
xaG(C ′

a) + G(C) − 1,

where C ′
a is the cone with the apex at 0 such that a small neighborhood of 0 in C ′

a
coincides with a small neighborhood of 0 in C\A − a.
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Observe that usual exponential sums over the integer points of A are obtained
from the rational function G(A) by substituting the exponentials ep1 , . . . , epd for the
variables x1, . . . , xd . Sums of quasi-polynomials (in particular, sums of polynomials)
can be obtained from exponential sums by differentiation with respect to parameters
p1, . . . , pd . A similar theory exists for integrals of exponentials, quasi-polynomials,
etc., over convex or coconvex polytopes.

Remark In order to compute the number of integer points in A, one is tempted to
substitute xi = 1 into the expression for the rational function G(A) through the
generating functions of cones. However, this is problematic as the denominator of
this expression vanishes at the point (1, 1, . . . , 1). To obtain a numeric value, one
can, e.g., choose a generic line passing through the point (1, 1, . . . , 1), consider the
Laurent series expansion of G(A) along this line, and then take the free coefficient of
this Laurent series. The same procedure is applicable to computing a quasi-polynomial
sum over A for exceptional values of p = (p1, . . . , pd), for which the rational function
of ep1 , . . . , epd , equal to this quasi-polynomial sum at generic points, has a pole.

2 Proof of Theorem A

Recall that every quadratic form Q on a finite dimensional real vector space V can be
represented in the form

x2
1 + · · · + x2

k − x2
k+1 − · · · − x2

k+�

for a suitable linear coordinate system (x1, . . . , xm), m � k + �. The pair (k, �) is
called the signature of Q. It is well known (see, e.g., [6]) that Q has signature (1, �)

for some � if and only if both of the following conditions are fulfilled:

(1) there exists a vector v0 ∈ V with Q(v0) > 0;
(2) the corresponding symmetric bilinear form B (such that B(u, u) = Q(u)) satisfies

the reversed Cauchy–Schwarz inequality: B(u, v)2 � Q(u)Q(v) for all u ∈ V
and v ∈ V such that Q(v) > 0.

For the convenience of the reader, we provide a proof of this statement. Suppose
that Q has signature (1, �). Then Q = x2

0 − x2
1 − · · · − x2

� with respect to some
linear system of coordinates x0, . . . , x�, . . . (note that the dimension of V may be
bigger than 1 + �). It suffices to take any nonzero vector along the x0-axis as v0.
If Q(v) > 0 and u ∈ V is not proportional to v, then the quadratic polynomial
λ �→ Q(v +λu) cannot be everywhere positive as there is a vector of the form v +λu
orthogonal to v0, and Q(v + λu) � 0 for such a vector. The discriminant of the
polynomial λ �→ Q(v + λu) being nonnegative translates into the reversed Cauchy–
Schwarz inequality. Conversely, the reversed Cauchy–Schwarz inequality implies that
no restriction of Q on a two-dimensional subspace is positive definite. Therefore, the
signature of Q is (k, �) with k � 1. On the other hand, the existence of a vector v0 ∈ V
such that Q(v0) > 0 implies k � 1.

Thus, the Aleksandrov–Fenchel inequality is equivalent to the fact that Qα has sig-
nature (1, �(α)) for every finite-dimensional linear family α of convex d-dimensional
bodies with d − 2 marked points.
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Fig. 1 Co-convex body in the
plane

θ1θ 2θ3θ4 T1
T2

T3
T4

2.1 An Illustration in the Case d = 2

To illustrate Theorem A in a simple case, we set d = 2.
Introduce an affine coordinate system (x, y) in R

2. We may assume that C lies in
the upper half-plane y � 0, and that one of the two boundary rays of C coincides
with the positive x-semiaxis. Suppose that a C-coconvex body A is a polygon with
edges E1(A), . . . , En(A), ordered so that adjacent edges have adjacent indices, and
so that E1(A) touches the x-axis. Let θk denote the angle between the line containing
the edge Ek(A) and the x-axis, as indicated in Fig. 1. Here and in the sequel, k runs
through 1, . . . , n. Fix a Euclidean metric on R

2. We will write hk(A) for the distance
from the origin to the line containing the edge Ek(A).

If we now have two co-convex polygons A and B with the same number of edges
and with the same angles θk , then we have

hk(A ⊕ B) = hk(A) + hk(B).

Thus, if the angles θk are fixed, co-convex polygons can be identified with vectors
(h1(A), . . . , hn(A)), and the operation ⊕ on C-coconvex polygons corresponds to the
usual vector addition. The numbers hk(A) are called support numbers of A. We can
now consider the following linear family β = (V,�, g) of C-coconvex polygons.
The space V is R

n (the dimension of the space being equal to the number of support
numbers), � is a small neighborhood of (h1(A), . . . , hn(A)), and g(h1, . . . , hn) is the
C-coconvex polygon with support numbers h1, . . . , hn .

A C-coconvex polygon g(v) can be naturally represented as a union of triangles
T1(v), . . . , Tn(v), as shown in Fig. 1. The angles of these triangles depend only on
θ1, . . . , θn . Namely, Tk(v) has angles θk , π − θk+1, θk+1 − θk . It follows that Tk(v)

and Tk(w) are similar. We conclude that the area of Tk(v) is the square of some linear
functional ϕk on V . Indeed, if the angles of a triangle are fixed, then its area is equal, up
to a constant positive factor depending only on the angles, to the square of the length
of any chosen edge. The length λk of the horizontal edge of Tk(v) can be expressed
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as a linear functional on V:

λk = hk

sin θk
− hk+1

sin θk+1

(if k = n, then the second term in the right-hand side should be omitted).
We can now write the following formula for the area of f (v):

Volβ(v) = ϕ1(v)2 + · · · + ϕn(v)2.

It is obvious from this representation that Volβ(v) is a positive definite quadratic
form on V . The Cauchy–Schwarz inequality written for this quadratic form yields the
inequality

BC
β (u, v)2 � Volβ(u)Volβ(v).

This is the reversed Aleksandrov–Fenchel inequality for d = 2 (for a special choice
of a linear family β, but in fact the general case easily reduces to this special case).
The argument presented above imitates some classical proofs of the isoperimetric
inequality.

2.2 Reduction of Theorem A to the Aleksandrov–Fenchel Inequality

In this subsection, we prove Theorem A. The proof is a reduction to the convex
Aleksandrov–Fenchel inequality. Fix a salient convex closed cone C with the apex
at 0 and a linear family β = (V,�, g) of C-coconvex bodies. We may assume that
g(�) is bounded in the sense that there is a large ball in R

d that contains all coconvex
bodies g(v), v ∈ �. Since g(�) is bounded, there exists a real number t0 > 0 such
that g(v) = g(v)t0 for all v ∈ �.

Choose any t1 > t0. We will now define a linear family α = (V×R,�×(t0, t1), f )

of convex bodies as follows. For v ∈ � and t ∈ (t0, t1), we set f (v, t) to be the convex
body Ct\(g(v) ∪ {0}). The proof of the coconvex Aleksandrov–Fenchel inequality is
based on the comparison between the linear families α and β.

We have the following relation between the polynomials Volα and Volβ :

Volα(v, t) = Vol(Ct )−Volβ(v), (V )

which is clear from the additivity of the volume. The first term in the right-hand side
has the form ctd , where c is some positive constant. The second term in the right-hand
side does not depend on t . It follows from (V ) that Volβ is a homogeneous degree d
polynomial.

Let us mark some points (v1, s1), . . . , (vd−2, sd−2) in � × (t0, t1). Apply the
differential operator 2

d! L(v1,s1) . . . L(vd−2,sd−2) to both sides of (V ). We obtain that

Qα(v, t) = c′t2 − QC
β (v), (Q)
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where c′ is some positive constant (equal to cs1 · · · sd−2). In the right-hand side of (Q),
we have the difference of two quadratic forms, moreover, these two forms depend on
disjoint sets of variables.

If q1, q2 are quadratic forms depending on disjoint sets of variables, and (k1, �1),
(k2, �2), respectively, are signatures of these forms, then q1 +q2 is a quadratic form of
signature (k1 + k2, �1 + �2). We now apply this observation to identity (Q). The first
term of the right-hand side, c′t2, has signature (1, 0). The signature of the left-hand
side is equal to (1, �) for some � � 0, by the classical Alexandrov–Fenchel inequality.
It follows that the signature of QC

β is (�, 0), i.e. the form QC
β is non-negative.

3 Proof of Theorem B and its Corollaries

In this section, we prove Theorem B and derive a number of corollaries from it.

3.1 Proof of Theorem B

Consider a salient closed convex cone C ⊂ R
d with the apex at 0 and a nonempty

interior. A closed convex subset � ⊂ C is said to be C-convex if � + C = �. The
following lemma gives the most important example of C-convex sets.

Lemma 3.1 If � ⊂ C is a convex subset such that C\� is bounded, then � is C-
convex.

Proof Since 0 ∈ C , we have �+C ⊃ �. It remains to prove that �+C ⊂ �. Assume
the contrary: there are points x ∈ � and y ∈ C such that x + y �∈ �. Consider the line
L passing through the points x and x + y. Since C\� is bounded, there are points of
� in L far enough in the direction from x to x + y. Thus x + y separates two points
of L ∩ � in L . A contradiction with the convexity of �. 	

Lemma 3.2 Let � ⊂ C be a convex subset such that C\� is bounded. For all suffi-
ciently large t > 0 and all s > 0, we have �t + Cs = �t+s .

Proof If x ∈ �t and y ∈ Cs , then x + y ∈ � by C-convexity (Lemma 3.1) and
ξ(x + y) � t + s since ξ(x) � t and ξ(y) � s. On the other hand, take z ∈ �t+s and
consider two cases.

Case 1: we have ξ(z) � t . Then z ∈ �t , and, setting x = z, y = 0, we obtain that
z = x + y, x ∈ �t and y ∈ Cs .

Case 2: we have ξ(z) > t . If λ = t/ξ(z), then ξ(λz) = t . We now set x = λz,
y = (1 − λ)z. The number t is sufficiently large; thus we may assume that all values
of ξ on C\� are less than t . Then x ∈ �t and y ∈ Cs . 	

Proposition 3.3 Under the assumptions of Theorem B and for all sufficiently large t,
we have

I�t ∗ I
−1
Ct

= I�t − ICt + I{0}.
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Proof It suffices to compute ICt ∗ (I�t − ICt + I{0}) and verify that it is equal to I�t .
Opening the parentheses in the former expression and using Lemma 3.2, we obtain

ICt +�t − ICt +Ct + ICt = I�2t − IC2t + ICt .

Since t is sufficiently large, we have I�2t − IC2t = I�t − ICt (both sides are equal to
the minus indicator function of C\�), and we obtain the desired. 	


Let � be a closed convex subset of C such that C\� is bounded. Consider the
corresponding C-coconvex body A = C\(� ∪ {0}). Then, for all sufficiently large t ,
we have

−IA = I�t − ICt + I{0},

in particular, the right-hand side is independent of t , provided that t is large enough. It
follows from Proposition 3.3 that −IA is a virtual convex polytope I�t ∗I

−1
Ct

. Moreover,
the same proposition implies that −I(A⊕B) = (−IA) ∗ (−IB). Thus A �→ −IA is a
homomorphism from the semi-group of C-coconvex bodies to the multiplicative group
of virtual polytopes. This completes the proof of Theorem B.

3.2 Proof of Corollaries 1.2 and 1.3

Corollary 1.2 follows directly from Theorem B and the theorem of [11] that a poly-
nomial valuation on integer convex polytopes defines a polynomial function on the
group of virtual integer polytopes. Corollary 1.3 follows from Theorem B and from
Proposition 3.4 stated below.

Proposition 3.4 The inverse of the virtual polytope −IA in the multiplicative group
of virtual polytopes is equal to

(−1)d−1
IA• ◦ σ + I{0}.

Here σ is the antipodal map taking v to −v.

Proof For a subset X ⊂ R
d , we let Int(X) denote the interior of X . According to

[11], the inverse of a virtual convex polytope ϕ is equal to �(ϕ)◦σ , where the additive
group homomorphism � : Zc(Z

d) → Zc(Z
d) is defined uniquely by the property that

�(IB) = (−1)d
IInt(B) for every integer convex polytope B with nonempty interior.

Setting ϕ = −IA, we obtain that

�(ϕ) = �(I�t − ICt + I{0}) = (−1)d(IInt(�t ) − IInt(Ct )) + I{0} = (−1)d−1
IA• + I{0}.

The desired claim follows. 	
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3.3 Proof of Theorem C

Let C , A, � and ξ be as above. We assume that C is an integer polyhedral cone and
that � has integer vertices. Let t > 0 be sufficiently large, so that A is contained in
Ct ′ for some t ′ < t .

Clearly, there is a homomorphism � from the additive group Z(Zd) spanned by
the indicator functions of integer cones to the additive group of rational functions of
x1, . . . , xd such that �(IQ) = G(Q) for every integer cone Q. Using the expression
IA = −I�t + ICt − I{0}, we obtain that

G(A) = −G(�t ) + G(Ct ) − 1.

Apply Brion’s theorem to G(�t ) and G(Ct ). Near all vertices of Ct , except 0, the
polytopes �t and Ct coincide. Therefore, the terms associated with these vertices
cancel each other. What remains are the terms associated with the vertices of �t that
are simultaneously vertices of A and the term with the vertex 0 of Ct (which is equal
to G(C)). Thus we have

G(A) = −
∑

a∈Vert(A)\{0}
xaG(C ′

a) + G(C) − 1,

as desired.

3.4 A Viewpoint on Theorem A Through Virtual Polytopes

We will now interpret Theorem A in more conceptual terms involving Theorem B.
The function Vol assigning to every convex polytope its volume extends to an additive
group homomorphism μ : Zc(R

d) → R such that μ(I�) = Vol(�) for every convex
polytope �. The homomorphism μ can be viewed as a valuation on polytopes. By [12],
the restriction of μ to the multiplicative group Z∗

c (Rd) of virtual convex polytopes is
a homogeneous degree d polynomial. It follows that there is a unique symmetric map

μ : Z∗
c (Rd) × · · · × Z∗

c (Rd) → R

(slightly abusing the notation, we use the same letter μ to denote this map) with the
property that μ(α, . . . , α) = μ(α) for every α ∈ Z∗

c (Rd) and that

μ(α1 ∗ β, α2, . . . , αd) = μ(α1, α2, . . . , αd) + μ(β, α2, . . . , αd)

for every α1, . . . , αd , β ∈ Z∗
c (Rd). The number μ(α1, . . . , αd) is called the mixed

volume of virtual convex polytopes α1, . . . , αd . This is justified by the observation that
if αi = I�(i) for some convex polytopes �(i), then the mixed volume of αi s is equal
to the mixed volume of �(i)s. It is well known that the function μ is continuous with
respect to a natural topology on Z∗

c (Rd), in which I�(n) → I� if convex polytopes
�(n) converge to a convex polytope � in the Hausdorff metric.
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Let C be a salient closed convex cone with the apex at 0 and a nonempty interior.
Take a linear functional ξ such that ξ � 0 on C and ξ−1(0) ∩ C = {0}. Suppose that
a convex subset � ⊂ C is such that C\� lies in the half-plane ξ < t0. We have

∂

∂t
μ(I�t , . . . , I�t )

∣
∣
∣
t=t0

= d

t0T

(
μ(I�t0+t0T , I�t0

, . . . , I�t0
) − μ(I�t0

, I�t0
. . . , I�t0

)
)

for arbitrary T . Indeed, on the one hand, the left-hand side equals the limit of the
right-hand side as T → 0. On the other hand, the right-hand side is independent of
T by the multi-linearity of the mixed volume. We now let T diverge to infinity, and
observe that the convex polytope 1

T �t0(T +1) converges to Ct0 . Thus we obtain that

∂

∂t
μ(I�t , . . . , I�t )

∣
∣
∣
t=t0

= d

t0
μ(ICt0

, I�t0
, . . . , I�t0

).

It follows that the number given by both sides of this equality does not depend on the
geometry of �, it only depends on C and on t0 (indeed, the left-hand side depends
only on the section {ξ = t} ∩�). In particular, the d copies of � can be replaced with
d different closed convex sets �(1), . . . , �(d) such that the complements C\�(i) are
contained in the set {ξ < t0}:

μ(ICt0
, I

�
(2)
t0

, . . . , I
�

(d)
t0

) = μ(ICt0
, I�t0

, . . . , I�t0
). (3.1)

As the convex set �
(2)
t0 degenerates to the cone Ct0 , e.g., through the family 1

T �
(2)
T t0

,
where T → ∞, we obtain that

μ(ICt0
, I

�
(2)
t0

, I
�

(3)
t0

, . . . , I
�

(d)
t0

) = μ(ICt0
, ICt0

, I
�

(3)
t0

, . . . , I
�

(d)
t0

)

or, subtracting the right-hand side from the left-hand side,

μ(ICt0
, I

�
(2)
t0

∗ I
−1
Ct0

, I
�

(3)
t0

, . . . , I
�

(d)
t0

) = 0. (3.2)

Set A(i) = C\(�(i) ∪ {0}) to be the C-coconvex polytopes corresponding to �(i).
Recalling that −IA(i) = I

�
(i)
t0

∗ I
−1
Ct0

, we can rewrite equation (3.2) as

μ(ICt0
,−IA(i) , . . .) = 0. (3.3)

Here dots replace any sequence of d − 2 virtual convex polytopes from the group
generated by I

�
(i)
t0

.

Taking � as above and setting A = C\(� ∪ {0}), we obtain that

μ(−IA) = −μ(IA) = −μ(ICt0
) + μ(I�t0

)
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from the additivity of the volume. Passing to the mixed volumes, we obtain that

μ(−IA(1) , . . . ,−IA(d) ) = −μ(ICt0
) + μ(I

�
(1)
t0

, . . . , I
�

(d)
t0

). (3.4)

Setting � = C in (3.1) and substituting into (3.4), we obtain that

μ(−IA(1) ,−IA(2) , . . . ,−IA(d) ) = μ(−IA(1) , I
�

(2)
t0

. . . , I
�

(d)
t0

). (3.5)

From the right-hand side, we can subtract μ(−IA(1) , ICt0
, I

�
(3)
t0

, . . . , I
�

(d)
t0

) (which is

equal to zero by (3.3)) to obtain that

μ(−IA(1) ,−IA(2) ,−IA(3) , . . . ,−IA(d) ) = μ(−IA(1) ,−IA(2) , I
�

(3)
t0

, . . . , I
�

(d)
t0

). (3.6)

Fix the sets �(i) with i � 3. Then the left-hand side of (3.6) can be viewed (up to
a sign) as the coconvex Aleksandrov–Fenchel from. In fact, it is equal to the minus
mixed volume of C-coconvex bodies A(i). On the other hand, the right-hand side is
a usual convex Aleksandrov–Fenchel form associated with convex polytopes �

(i)
t0 ,

i � 3, evaluated at virtual polytopes −IA(1) and −IA(2) . Let B denote this con-
vex Aleksandrov–Fenchel form. It follows from the convex Aleksandrov–Fenchel
inequality that B(α, α) � 0 provided that α ∈ Z∗

c (Rd) is orthogonal to some convex
polytope � in the sense that B(α, I�) = 0. But −IA(1) is orthogonal to Ct0 by (3.3)! It
follows that B(−IA(1) ,−IA(1) ) � 0. This implies the coconvex Aleksandrov–Fenchel
inequality.

Thus we obtained another proof of Theorem A. Although this proof is no simpler
than the one given in Sect. 2.2, it reveals the role of virtual convex polytopes and
the fact that the coconvex Aleksandrov–Fenchel form is no different from the convex
Aleksandrov–Fenchel form evaluated at certain virtual polytopes.

Remark We now sketch an analogy, which can be easily formalized and which may
shed some light to the argument presented above. Consider complex algebraic vari-
eties X , Y and a regular map f : X → Y . Fix a point y0 ∈ Y , and assume that
f : X\ f −1(y0) → Y\{y0} is an isomorphism. A Cartier divisor D in X is said to be
sub-exceptional if the support of D maps to y0 under f . Sub-exceptional divisors in
X correspond to coconvex polytopes (under the analogy, which we are discussing). A
Cartier divisor D in X is said to be off-exceptional if D = f ∗(D̃) for some Cartier
divisor D̃ in Y , whose support does not contain y0. Off-exceptional divisors correspond
to the cone C (we are looking at the local geometry of Y near y0, thus we do not dis-
tinguish between different off-exceptional divisors). Let S and O be a sub-exceptional
and an off-exceptional divisors, respectively. If [S] and [O] stand for the classes of
these divisors in the Chow ring, then obviously [S] · [O] = 0, since the supports of S
and O are disjoint. This fact is analogous to Eq. (3.3). As is shown in [10], the Hodge
index theorem implies the Aleksandrov–Fenchel inequalities for the intersection of
divisors in X (under some natural assumptions on X , e.g., when X is projective and
smooth). These inequalities can be used to provide an analog of Theorem A for the
intersection form on sub-exceptional divisors. To make the described analogy into a

123

Author's personal copy



Discrete Comput Geom

precise correspondence, one takes X and Y to be toric varieties associated with integer
polytopes �t0 and Ct0 .
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